Adaptive jump-preserving estimates in varying-coefficient models
نویسندگان
چکیده
منابع مشابه
Adaptive Varying-coefficient Linear Models
Varying-coefficient linear models arise from multivariate nonparametric regression, nonlinear time series modelling and forecasting, functional data analysis, longitudinal data analysis, and others. It has been a common practice to assume that the vary-coefficients are functions of a given variable which is often called an index. A frequently asked question is which variable should be used as t...
متن کاملGeneralized Varying-Coefficient Models
This paper deals with statistical inferences based on the generalized varying-coeÆcient models proposed by Hastie and Tibshirani (1993). Local polynomial regression techniques are used to estimate coeÆcient functions and the asymptotic normality of the resulting estimators is established. The standard error formulas for estimated coeÆcients are derived and are empirically tested. A goodness-oft...
متن کاملVarying Index Coefficient Models
It has been a long history of using interactions in regression analysis to investigate alterations in covariate-effects on response variables. In this article, we aim to address two kinds of new challenges arising from the inclusion of such high-order effects in the regression model for complex data. The first kind concerns a situation where interaction effects of individual covariates are weak...
متن کاملAdaptive LASSO for Varying-Coefficient Partially Linear Measurement Error Models
This paper extends the adaptive LASSO (ALASSO) for simultaneous parameter estimation and variable selection to a varying-coefficient partially linear model where some of the covariates are subject to measurement errors of an additive form. We draw comparisons with the SCAD, and prove that both the ALASSO and SCAD attain the oracle property under this setup. We further develop an algorithm in th...
متن کاملBayesian varying-coefficient models using adaptive regression splines
Varying-coefficient models provide a flexible framework for semiand nonparametric generalized regression analysis. We present a fully Bayesian B-spline basis function approach with adaptive knot selection. For each of the unknown regression functions or varying coefficients, the number and location of knots and the B-spline coefficients are estimated simultaneously using reversible jump Markov ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 2016
ISSN: 0047-259X
DOI: 10.1016/j.jmva.2016.03.005